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Fig. 1: Overview. Vid2Robot is a video-conditioned robot policy. Given a human demonstration (top), Vid2Robot recognizes the task
semantics and performs the same task based on the robot’s current visual observation (bottom left). A successful trajectory is presented on
the bottom right.

Abstract—While large-scale robotic systems typically rely on
textual instructions for tasks, this work explores a different
approach: can robots infer the task directly from observing
humans? This shift necessitates the robot’s ability to decode
human intent and translate it into executable actions within its
own physical constraints and environment.

We introduce Vid2Robot, a novel end-to-end video-based
learning framework for robots. Given a video demonstration of
a manipulation task and current visual observations, Vid2Robot
directly produces robot actions. This is achieved through a unified
representation model trained on a large dataset of human video
and robot trajectory. The model leverages cross-attention mech-
anisms to fuse prompt video features to the robot’s current state
and generate appropriate actions that mimic the observed task.
To further improve policy performance, we propose auxiliary
contrastive losses that enhance the alignment between human
and robot video representations.

We evaluate Vid2Robot on real-world robots, demonstrating
a 23% improvement in performance compared to other video-
conditioned policies when using human demonstration videos.
Additionally, our model exhibits emergent capabilities, such
as successfully transferring observed motions from one object
to another, and long-horizon composition, thus showcasing its
potential for real-world applications.

I. INTRODUCTION

The path to creating versatile robots that provide assistance
in people’s daily routines requires them to learn new skills on-
the-go. These range from small preferences like which brand
of dishwasher a specific household uses to entirely different

ways to clean the house. For known skills, humans simply
communicate in natural language, but when nuance is required
or a skill is novel, we revert to demonstrations. For example,
we might show how a particular microwave works or how we
prefer our cabinets to be organized. To enable seamless robot
deployment, robots need the same ability for generalization
from demonstration for learning new policies that comes so
naturally to humans.

Humans can infer the intentions of other humans based on
third-person visual observations. Oftentimes, we use social
reasoning and common sense to understand others’ goals
implicitly. This ability is leveraged both as children and adults
(e.g. via How-To videos [31]) for learning anything where the
mechanical nuance of the task is hard to capture in still images
or text [6] (e.g. how to knead dough or knit). If robots can
also be taught to understand the intentions of other agents, it
might allow them to better interact with humans and perform
tasks more efficiently.

This work focuses on visual imitation learning, where robots
learn to perform tasks by watching video demonstrations. This
setup offers several advantages. First, it allows robots to learn
from agents with different embodiment, enabling new skill
acquisition without tele-operation. Second, it enables robots
to learn from experts, even if they are not situated with the
robot. Finally, visual imitation learning is ideal for teaching
tasks that are difficult or impossible to describe in words.



Existing multi-task robot manipulation models (e.g. RT-
1 [8], RT-2 [9], and RT-X [34]) use language conditioning
to output a robot trajectory. This reliance of text alone for
task specification makes it difficult for robots to handle pol-
ysemy and tasks whose executions vary dramatically based
on context. For example, ‘open drawer’, ‘open cabinet’, ‘open
container with lid’ and ‘open jar with screw cap’ might share
the same verb but require very different motor control for each
interaction. Here the agent should not generalize its policy,
whereas it should generalize from one drawer to others that
vary in type, color and shape. For this reason, there are a
broad range of tasks for which it is hard to design primitives
for high-level planning approaches [26, 2].

Another common approach has been to use a final goal
image in goal-conditioned behavior cloning tasks [32, 25].
While several task specifications can be defined in terms of the
resulting state of the environment, there are others for which
the manner in which the action is performed is part of the
specification. For example, ‘hold the flag’ and ‘wave the flag’
can have the same final goal image. This ambiguity can be
resolved through the use of several sub-goal frames, i.e. video
conditioning.

While language conditioned policies achieve somewhat high
success rates, video conditioned policies have lagged behind
in performance, as shown in prior work [22]. Cases of good
performance [41] with video conditioning require the provided
video to be from the same workspace with limited variability.
Based on observations, we identify three main challenges for
video conditioned policies: (1) High dimensional data: Raw
videos are high dimensional data that require more compute
and memory to process. This makes video conditioned multi-
task policies difficult to train at scale. (2) Variability in task
specification: There can be significant variance in how people
perform the same task. Demonstrations for a task like ‘unstack
the cups’ can have both visually distinctive and physically di-
verse cups, in addition to changes in the background distractors
and lighting conditions. This leads to high variability in task
specification for a policy that needs to perform the same task
in a new setting. (3) Limited Availability of Training Data:
While there is an abundance of unlabeled video data on the
internet, obtaining labeled video datasets for specific tasks that
our robots are capable of doing is challenging.

Despite these challenges, as noted, video conditioned policy
learning is a core challenge robots need to master. Therefore,
to reduce the reliance on detailed and potentially ambiguous
language prompts, we aim to enable physical visual demon-
strations as a another way for task specification. To this end,
we study how end-to-end models with video-conditioning can
used to specify tasks to robot.

We aim to develop an end-to-end system that enables rapid
adaptation to tasks specified in the form of video demonstra-
tion. Unlike prior work that either learned representations from
videos for only object and verb recognition [22] or learned
motor control in simulation [45], our work demonstrates the
applicability of end-to-end learned video representations for
real-world multi-task robotic control. We present the key con-

tributions of our work as follows: (1) We present a transformer-
based policy to encode video task specification, demonstrated
by either robot or human agent embodiments (§II). (2) We
encourage alignment between the prompt and robot video
representations using three contrastive auxiliary losses during
training (§II-E) (3) Through real robot experiments, we find
our video conditioned policy is better than baselines on human
prompt videos. Furthermore, our policy is better at cross-object
motion transfer (§III).

II. APPROACH

A. Preliminaries

Our objective is to design a robotic system that takes in a
prompt video of a manipulation task and outputs actions that
accomplish the task demonstrated in the video. This system
needs to infer the underlying task from the prompt video
(which might have a different setup or embodiment than the
robot) and then manipulate the objects in its own environment
to achieve the inferred task. Specifically, we are given a prompt
video V and the robot state St = {xi}ti=t−k−1 where xi
is the frame from the robot’s camera stream at time i, k
is the maximum number of historical frames, and t is the
current time-step. We train a policy π(at|St, V ) that infers
the underlying task from V and predicts task relevant action
at. To train this model, we need a dataset of paired prompt
videos and robot trajectories. We will discuss in detail how to
create paired datasets below.

B. Datasets

To train a video-conditioned robot policy we need a dataset
of pairs: prompt videos and robot trajectories performing the
same task. In this work, we explore reference videos where
the task is performed by both humans and robots. To create
this dataset, we rely on three classes of data:
1) Robot-Robot: We pair existing robot-robot videos of the

same task. For this pairing we consider two videos to match
if they are performing the same task in different settings.
We define ‘task‘ based on natural language instructions
used when recording robot trajectories. These instructions
typically consist of one or two verbs surrounded by nouns,
such as ‘place water bottle upright’, ‘move the coke can to
the green chip bag’ or ‘open top drawer’. The objective of
this pairing is two-fold: first, to be able to take advantage of
an already labeled and collected dataset of robot trajectories
and second to ensure robots are able to imitate when the
same task is demonstrated in a different environment.

2) Hindsight Human-Robot: Here we use the task instruc-
tions from the robot trajectories dataset and ask one to
five human participants to perform the task and record
a demonstration video from the robot’s perspective/view.
The set of instructions are the same as before, but there
is a significant embodiment and speed variability due to
different humans performing the task with left or right
hands and at a randomized robot camera angle. This
requires some manual effort but provides us with a lot of
paired data for training the policy for the available set of
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Fig. 2: Dataset creation. (top row) Here we show a Robot-Robot video pair for placing the rxbar into top drawer. We similarly pair existing
robot-robot videos performing the same task. (middle row) Here we show Hindsight Human-Robot paired videos for picking a coke can
from the bottom drawer and placing it on the counter task. We use the task instructions from robot trajectories and ask human participants
to perform the task and record a demonstration video from robot’s perspective/view. (bottom row) Here we show a Co-located Human-Robot
pair of videos for placing the pipe wrench in the toolkit. We record both a human demonstration and by a robot teleoperation in a same
workspace. Different workspaces can be used to perform the same task instruction, thus, eventually resulting in pairs with visually diverse
prompts and robot state observations. More details in §II-B.

instructions in the robot dataset without having to collect
new robot trajectories.

3) Co-located Human-Robot In this case, a human and a
robot perform the same task in the same workspace. We
used this approach to collect human demonstrations and
robot trajectories in diverse spaces such as living space with
sofas, meeting room with whiteboards, hardware worksta-
tions with toy tools, kitchen with countertop, refrigerator
and sink, storage supplies area, and more.

We show examples of paired prompt and robot videos
from each of the three datasets in Figure 2. As can be seen,
there is a considerable difference in the backgrounds and
distractor objects in the Hindsight Human-Robot and Co-
located Human-Robot datasets. A different complexity arises
when comparing the first approach (Robot-Robot) where the
actor is a robot with same morphology to the other two cases
where the human is the actor in the prompt videos.

After combining all the datasets, we have ∼100k robot
videos and ∼10k human videos covering the tasks introduced
in RT-1 [8] and RT-2 [9]. We include videos from all three
data sources as they represent varying levels of difficulty and
expense to collect. Pairing existing robot datasets requires
less additional effort but lacks diversity in how the task is
done. The second source of data is created by asking humans
to mimic existing robot trajectories. While this adds some
diversity in prompt videos, it does not cover any new tasks
on the robot side. Finally, the presumed gold-standard is to
collect data where both humans and robots are co-located in
the same environment and perform diverse tasks. This takes the
most amount of time as labor is required both of the humans
and robot trajectories collected through tele-operation.

C. Model Architecture

Our policy takes as input the prompt video and the current
robot state and outputs robot actions. It consists of four
modules: (1) prompt video encoder (2) robot state encoder, (3)
state-prompt encoder, and (4) robot action decoder. The full

architecture is illustrated in Figure 3 and each of the modules
are detailed below:
(1) Prompt Video Encoder encodes the video demonstration
provided as a reference to convey the desired task semantics.
The prompt video encoder implicitly learns to infer what task
should be performed and how it needs to be done. The prompt
encoder consists of a per-frame Image encoder φp (ViT [15])
followed by a Perceiver Resampler [1, 20] ψp. The output of
the prompt encoder ψp(φp(V )) = zprompt is a set of N tokens
of d-dimension to condition the policy with the task relevant
attributes from the video.
(2) Robot State Encoder encodes the current state of the
robot given the current frame and last k frames as input. Note
that this module also encodes information about the objects
and environment of the robot. The architecture is similar
to the prompt encoder, that is, a per-frame Image encoder
φs followed by a Perceiver Resampler ψs. Similar to the
prompt encoder’s outputs, the output of the state encoder is
ψs(φs(St)) = zstate that encodes the latent environment and
robot state information from the history of recent observations.

We use the same image encoder weights for both (1) and
(2), that is, φp=φs=φ. The role of the image encoder φ is to
capture spatial visual information in each frame. The Perceiver
Resampler is used to enable temporal learning across frames
as well as reduce the number of video tokens that must be
passed into the action decoder.
(3) State-Prompt Encoder The state-prompt encoder takes the
prompt video encoding zprompt and robot state encoding zstate
and outputs a task encoding relevant for action prediction
zstate|prompt. The module is trained to output robot actions
by cross-attending between the state encoding as queries and
the prompt video encoding as keys and values. Intuitively, the
state-prompt encoder enables fusion of the state and prompt
information. For example, if the prompt video demonstrates
picking up of an apple in the basket and the current state
contains apple, banana and orange, then the cross attention
between the state and prompt encoding enables learning for
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Fig. 3: Architecture. Our model takes as input frames of the prompt video and the robot’s current observations, encodes those into prompt
video and robot state token embeddings, which are then processed through into state-prompt encoder and decoded into a robot action for
the current timestep. More details in §II-C.

which object to attend to in the state, which is crucial for the
next step of action decoding. We refer to the output of the
state-prompt encoder as prompt-aware state tokens.
(4) Robot Action Decoder The goal of the action decoder is
to predict the action vector at for the current state St such
that it completes the task shown in the prompt video Vp. The
action decoder is a transformer decoder architecture that takes
in the fixed action position tokens [50] as input queries and the
prompt-aware state tokens zstate|prompt for keys and values.
The size of the action position embedding is N × d where N
is the number of action dimensions and d is the transformer
embedding dimension. More details on the action vector in
§II-D.

The action position embeddings cross-attend to the prompt-
aware state tokens to predict the target binned action values as
output. Each output token of the action decoder corresponds to
an action dimension for the mode, arm and base. Specifically,
each token embedding is projected to 256 dimensions and
a softmax layer is applied on the top to obtain the bin
corresponding to the target action vector. Unlike prior work
[8, 9] that use autoregressive action decoding that requires
multiple forward passes during inference, we use action posi-
tion embeddings for one forward pass prediction like in ACT
[50]. Instead of predicting one action for the next timestep,
we follow the approach outlined in [22, 50] and train the
policy with a prediction horizon of four steps. We always use
the action bin that has the highest probability, i.e. argmax
over predicted probabilities, to choose the action value for
execution.
Cross-Attention Layers. In the Vid2Robot architecture, we
use Cross-Attention Transformer layers extensively. They are
used in the following modules: Prompt Resampler, State
Resampler, State-Prompt Encoder and Action Decoder. We
found Cross-Attention layers are helpful in managing the high
number of tokens and the resulting large attention matrices
when processing both prompt videos and robot state videos.
This is because the standard self-attention layers would re-
quire orders of magnitude more memory to process the same
video. For example, when using ViT-B/16 the total number

of video tokens for a 16 frame reference video and a 8
frame robot state video at 224 × 224 resolution would be
8 × 196 + 16 × 196 = 4704. A full self-attention operation
on this would lead to an attention matrix with 47042 ∼ 22M
entries. However, by using two Perceiver Resamplers with 64
latents we were able to train with attention matrices of the size
8×196×64+16×196×64 ∼ .3M. Thus, cross attention layers
in Vid2Robot play an important role in reducing attention
computation and enabling training with paired videos.

D. Preprocessing

To handle the varying lengths of videos for efficient training,
we randomly sample N = 16 frames always including first
and last frames and sort them in increasing order of time.
During training, we sample a robot state St by sampling a
random timestep first. We then select the preceding k − 1
frames to create a robot state video comprising of a total
of k = 8 frames before. In case there are less than k − 1
frames before the current time-step, we repeat the first frame
to create a fixed size robot state video. The pixel values in each
frame are normalized between 0 to 1. Each frame is resized to
(224, 224). Photometric distortions like cropping, brightness,
contrast, hue and saturation are applied during training.

The action at that timestep consists of the 3 components:
Mode: (m) whether to terminate episode, move only arm,
move only base or both. Arm: gripper position (x, y, z),
orientation (rotation along xy, yz, zx), and the degree of
closedness (c). Base: displacement (x, y) and rotation. Overall,
the action at = [m, gx, gy, gz, θxy, θyz, θzx, c, bx, by, bθ] is
an 11-dimensional vector. Each of the values have different
ranges, which we first use to scale the values in between 0 and
1. We then discretize the values into 256 bins each. In total,
we construct 11-dim action vector as target, each of which has
value between [0, 255].

E. Training

Action Prediction Loss We train Vid2Robot end-to-end with
behavior cloning. The idea is to learn video representations
from raw pixels to recognize task verb and objects, as well as
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Fig. 4: Training Setup. We show all the losses Vid2Robot is trained with and how each loss is connected to its different modules. Along
with (1) the main action prediction loss, we apply three auxiliary losses: (2) temporal video alignment loss, (3) a contrastive loss between
the prompt and robot video performing the same task, and (4) a contrastive loss between a prompt/robot video with the language embedding.
More details in §II-E.

learn motor control to accomplish it. We use a classification
loss on actions that have been tokenized into N=256 bins.
Given the robot trajectory for performing a task with current
visual observations xt, we have the corresponding expert
action at. The action prediction loss is Cross Entropy between
the predicted action and the expert action as:

LCE(at, ât) =
∑
τ

at log ât (1)

This trains all the model parameters, as shown in Fig 3.
Auxiliary Losses. Although our dataset size is substantial, it
is insufficient for training large Transformer based models. In
order to prevent over-fitting by just predicting actions correctly
on the training set, we add three auxiliary losses that encourage
learning features that are helpful in understanding semantics
in prompt videos.

Video Alignment Loss: We want to encourage temporal
alignment between prompt videos and robot videos performing
that show the same task. By aligning prompt videos and robot
videos, we want the image encoder to learn to be invariant
to different embodiments, lighting, backgrounds, view-angles
and distractor objects while still encoding features relevant to
predicting task progress. Our choice of loss is the temporal-
cycle consistency loss introduced in [18]. This loss has been
shown to encode task progress when trained on videos of
different agents performing the same task [48]. This loss
is applied on per-frame image embeddings of the prompt
Vp and robot Vr videos during training. To apply the loss,
we average pool the per-frame embeddings output in spatial
dimensions from image encoder φ and apply a projector head
of 2-layer MLP [11]. We call this as alignment pooling layer
Φ on the per-frame image embeddings, as shown in Fig 4.

For each video Vi, this results in a sequence of embeddings
Ei = {Φ(v1i ),Φ(v2i )...,Φ(vLi

i )}, where Li is the length of the
ith video.

We apply TCC loss on encoding Ep, and Er for prompt
and robot video respectively. The intuitive idea of TCC loss
is that we want to ensure the representation of every frame
of Ep should have a correspondence in Er and vice versa.
This involves two steps: First, we compute soft neighbor of
tth frame of Ep (Etp in short) in Er and call it Ẽtpr.

Ẽtpr =

Lr∑
k

αkE
k
r , where αk =

e−‖E
t
i−E

k
j ‖

2∑Lj

k e−‖E
t
i−Ek

j ‖2
(2)

Second, we find the corresponding frame for this newly
computed soft-neighbour in Ep. This is called cycle-back
in [18] and it involves similar soft-neighbour computation as in
Equation 2 to obtain say Êtpr, which ideally should be same as
t, that is, (Êtpr−t)2 should be minimized. TCC loss minimizes
such mean squared error between all frames for prompt and
robot video encodings and vice-versa, that is,

LTCC(Ep, Er) =
∑
t∈Vp

(Êtpr − t)2

LTCC =
LTCC(Ep, Er) + LTCC(Er, Ep)

2

(3)

Prompt-Robot Video Contrastive Loss (VVCL): We apply
contrastive loss between prompt tokens produced by robot or
prompt video performing the same task. This loss encourages
the prompt encodings to learn task semantics from video
tokens only in a self-supervised manner. A thing to note here
is that the initial pairing of prompt and robot video has been
done using natural language. However, by using a constrastive



loss only on video embeddings with a self-supervised loss,
we hope to encode features not covered by the short natural
language embedding itself. Examples of these features include
similar motions like reaching for objects, and rotating the
robot arm. We use a Attention Pooling layer to merge features
from the N prompt tokens to produce a single embedding for
each video. We apply the SigLIP [49] loss between video-
video pairs to encourage videos showing same task, involving
similar motions and interacting objects, to be close to each
other while being away from other videos in the batch. A
batch contains the same number of robot videos and prompt
videos, say B. We use the prompt encoder ψp(φ(·)) to obtain
a batch of full robot video embeddings Zrobot and prompt
video embeddings Zprompt, each of size B × d. We multiply
them, Zrobot · ZTprompt to obtain a B × B matrix. Adding a
learnable temperature τ and bias b, we have our logit matrix
as Ŷ = (Zrobot · ZTprompt) ∗ τ + b. We consider the videos of
robot and prompt performing the same task as positives and
assign them a label of 1 along the diagonal and -1 for off-
diagonal pairs, that is, the label matrix Y = 2IB − 1. SigLIP
loss is the negative loglikelihood, specifically, σ′(Z1, Z2) =
−
∑

log σ(Y · (Z1 · ZT2 ) ∗ t + b), where Y = 2IB − 1. The
video-video contrastive loss is then defined as:

LV V CL = σ′(Zprompt, Zrobot) (4)

Video-text Contrastive Loss (VTCL): We add a contrastive
loss between prompt tokens Zprompt and those produced by
robot video Zrobot and the embedding of the text instructions
of the task Ztext. This encourages a part of the embedding
space to be aware of object names and verbs present in the
prompt and the robot videos. A version of this loss has been
applied before by BC-Z [22] as auxiliary language regression
loss. We use an Attention Pooling layer [47] with one latent
query to merge features from the N prompt tokens to produce
a single embedding for each video. Within a batch, we retrieve
B pairs of video and text embeddings. Similar to Equation 4,
we apply SigLIP [49] loss to get

LV TCL =
σ′(Zprompt, Ztext) + σ′(Zrobot, Ztext)

2
(5)

This encourages every video to have similar embeddings
to their textual description embeddings, while being different
from the text embeddings corresponding to other videos in the
batch.

Overall, we apply the mean of all four losses for training
that is L = 1

4 (LCE + LTCC + LV V CL + LV TCL).

F. Implementation

We trained the model (implemented in Jax) for 200K
iterations. We use AdamW optimizer with an initial learning
rate of 8e-5 using a cosine learning rate schedule with warmup
steps 2,000 and final learning rate of 1e-6. For both the Prompt
and State Resamplers, we use 2 Perceiver Resampler layers
with 64 latents. Both state-prompt encoder and action decoder
are 4 layer deep cross-attention transformers.

III. EXPERIMENTS

We present results with real robot evaluations for our
multi-task video-conditioned policy. One of the key questions
that we tackle in this work is how well robots can imitate
humans performing manipulation tasks. Because of differences
in embodiments, humans perform manipulation tasks at a
different speed and style. We study the effect of using robot
as well as human videos as prompts.
Metrics. We refer to a rollout as a sequence of actions inferred
from the policy and executed on the robot from an initial state
observation and prompt video, until the policy terminates or
a maximum number of steps are taken, whichever is lower.
We define success for a rollout when the policy executes
the task instruction shown in the prompt video. A successful
rollout involves correct actions to be taken successively in the
environment, without any assistance for resets or recovery. For
each task instruction, we record many rollouts per policy. We
take the average of success recorded across all the rollouts and
call it the Success Rate for that task. Aggregated success rate
across tasks is referred as Overall Success Rate.

A mistake made early on in a rollout can result in poor
success rate, even if the model’s offline overall prediction
accuracy is high. For example, if a policy makes an error while
grasping a water bottle early on in the task and it slips to an
unreachable location, the rollout will be marked as a failure,
even if the policy had good action predictions for the later
steps. To record partial progress for a rollout, we annotate
whether the robot reached the correct location, grasped the
correct object, released the object at the correct location, and
terminated the task correctly. More details on partial success
analysis in §III-A.
Evaluation Setup. We ask human raters to evaluate success
for a policy’s rollout on a robot. We evaluate the policies
by varying the robots, lighting conditions, chest of drawers,
and objects. We ensure the policies being evaluated are shown
similar initial object configurations during rollouts. The initial
state is randomized after all policies have been evaluated for
a given initial state. For all rollouts, we sample prompt videos
that are not seen by the models during training. This ensures
that the policies are evaluated for whether they can recognize
the task from new prompt videos or not.
Baselines. We compare our model with BC-Z [22], a video
conditioned policy using a ResNet-18 encoder. BC-Z [23] in-
volves demonstration-observation pairs processed via a FiLM
[37] conditioned ResNet encoder and fed into a ResNet based
policy network to predict robot actions. For a fair comparison,
we train the BC-Z model with the same training data used to
train the Vid2Robot model. BC-Z doesn’t have a terminate
action, so we run its rollouts for a fixed maximum number of
steps.
Key Questions and Results We address the following ques-
tions in this work:

1) How well do video-conditioned policies perform when
they are shown a task in an unseen video? (Fig 5, § III-A)



Fig. 5: Policy Rollouts. Each row shows a prompt video of a human doing a task on the left, and on the right we show the corresponding
successful robot rollouts using Vid2Robot. Note how visually different the prompts are, while the policy rollouts are recorded with different
lighting, background, as well as number and placement of the distractor objects.

TABLE I: Task Success Rate for Robot and Human prompts.

Prompter Model pick pick-place on place into open close move near knock over place upright Overall

Robot BC-Z 75.0% 50.0% 61.5% 16.7% 66.7% 44.0% 58.3% 50.0% 52.6%
Vid2Robot 75.0% 58.8% 50.0% 91.7% 100.0% 33.3% 41.7% 16.7% 54.9%

Human BC-Z 50.0% 12.5% 12.5% 0.0% 50.0% 43.8% 12.5% 50.0% 30.6%
Vid2Robot 100.0% 50.0% 50.0% 62.5% 87.5% 43.8% 25.0% 12.5% 52.8%

2) What is the gap in success rate due to prompt embodiment
difference (robot v/s human)? (§ III-A)

3) Can we leverage the learned motion representations for
out-of-distribution object interactions? (§ III-B)

A. Task-based success

We compare the our Vid2Robot model and baseline BC-
Z with robot and human prompt videos in Table I. Both
Vid2Robot and BC-Z were trained on a same data mixture
containing robot-robot and human-robot paired data. Prompt
videos cover a subset of the training tasks but the videos
themselves are new for the models. In this evaluation, we
investigate what each model’s ability is to infer the task spec-
ification from prompt video as well as the current observed
state of the robot.

In order to test the capabilities of the model in different
settings on real robot, we evaluate it across eight categories
of manipulation tasks as shown in Table I. Specifically, we
evaluate for nine tasks: ‘knock water bottle over’, ‘move rxbar
chocolate near coke can’, ‘move green jalapeno chip bag near

coke can’, ‘pick green rice chip bag’, ‘place coke can upright’,
‘pick coke can from bottom drawer and place on counter’,
‘open middle drawer’, ‘close middle drawer’, and ‘place apple
into top drawer’.

We ask four evaluators to carry out two rollouts per task for
a prompt video dataset and policy setting (a row in Table I),
that implies, we have eight trials per task to evaluate a policy’s
task success rate. We report overall success rate per row over
nine tasks with eight trials per task, that is, 9×8 = 72 trials.
In total, our evaluations in Table I required 72×4 = 288 real
robot rollouts.

1) What is the gap in success rate due to embodiment
difference in prompt videos?: We compare our model with
BC-Z when prompted with robot and human videos. BC-Z
serves as a strong baseline for our comparisons. The overall
success rate of our model Vid2Robot outperforms BC-Z for
Human prompt videos by 20%, and is comparable for Robot
prompt videos. Note that there is an order of magnitude more
training samples for robot trajectories than human videos
in our training mixture. Hence, there isn’t a significant gap



Fig. 6: Partial Success Rate for BC-Z and Vid2Robot. Our policy
Vid2Robot outperforms BC-Z in terms of reaching the correct object,
grasping it, releasing it at the correct location and then terminating
the episode correctly. Note that BC-Z does not have terminate control.

TABLE II: Cross-object motion transfer success.

pick- place place knock
Model pick place on into upright over Overall

BC-Z 45.8% 0.0% 29.2% 12.5% 0.0% 17.5%
Vid2Robot 45.8% 25.0% 54.2% 16.7% 29.2% 34.2%

in performance for robot prompt videos. For human prompt
videos, our model outperforms BC-Z in most tasks, showing
that Vid2Robot captures the task semantics from prompt
videos better than the baseline. Our model outperforms in
tasks like picking from drawer and placing on the counter,
and opening/closing drawer tasks by a large margin. The most
challenging task is placing upright and knocking over. We
analyze the failure reasons in §V Fig 9.

2) How well do video-conditioned policies perform when
they are shown a task in an unseen video?: In addition to
marking a rollout as a success, we recorded partial success
annotations per rollout. In Fig 6, we observe that our model
reaches to the correct object 78% of the time, about 8%
more as compared to baseline. The policies sometimes fail
to reach the correct object and go towards a distractor instead.
Next, grasping errors happen, particularly with small and
deformable objects and in collision prone areas like drawer
handle or counter’s edge. Here our model (65%) outperforms
BC-Z (45%) by a large margin of 20%. A successful grasp
often the most difficult part in a rollout, and the most crucial
for success. After grasping, most tasks require releasing at
a correct location. There is a slight drop in success rate in
both models due to incorrect release during the rollouts. While
BC-Z runs for a fixed number of steps, our policy Vid2Robot
predicts when to terminate. We observe that the rate of release
and terminate is almost identical, about 57% for our model,
that implies, that after releasing at correct location, Vid2Robot
mostly terminates successfully.

B. Cross-object motion transfer

Our policy and baseline were trained with paired videos as
discussed in §II-B. This implies that the training data included

Prompt video showing task “Place coke can upright”

Policy Rollout Videos with above prompt video but different objects

Robot places green can upright, not the chips bag or banana

Robot places chips bag upright

Robot places stapler upright

Robot places unseen soft toy upright

Fig. 7: Qualitative results for cross-object motion transfer. Given a
prompt video of placing coke can upright, we rollout the policy with
a green can, chips bag, stapler and a soft toy in front of the robot.
We observe that our model can infer the motion of place upright in
the prompt video and apply it on other objects. There is an implicit
notion of pragmatics in the policy as shown by the selection of green
can over other objects.

only those scenarios where the interaction object shown in
prompt is present in the current robot observations. But what
if we provided a prompt video of one object and tested on
other objects. Does it do the same motion as shown in the
prompt video? Interestingly, we found our model to perform
learned manipulation actions on objects that it has not seen
in train set. We call this emergent behavior as cross-object
motion transfer.

We compare Vid2Robot with BC-Z for cross object motion
transfer ability with five prompt videos, namely, ‘knock water
bottle over’, ‘pick green rice chip bag’, ‘place coke can
upright’, ‘pick coke can from bottom drawer and place on
counter’, and ‘place apple into top drawer’. Each prompt
video is evaluated with unrelated objects in robot’s initial
observation. The objects used for evaluation are ‘orange’,
‘green can’, ‘chips bag’, ‘banana’, ‘pink piggy soft toy’,
‘wrist watch’. We selected objects to have diverse shape, size,
and deformability to evaluate situations that require different
grasps for success.

The evaluation setup is similar to §III-A. Here the evaluator
sets up one of the object for a task and records rollouts for
each model. We compare 2 models on 5 tasks with 6 objects,
so every evaluator runs 2×5×6 = 60 rollouts. We repeat the
evaluation with four raters, thus reporting results in Table II



on a total of 4×60 = 240 rollouts.
1) Can we provide a prompt video of one object and test

it on other objects? Does the policy do the same motion as
shown in the prompt video?: In Fig 7, we show the above
experimental setup qualitatively. We use a prompt video to
‘place coke can upright’. We observe that the policy is able
transfer the action of ‘placing upright’ to several objects, like
a green can, a chips bag, a stapler, and a soft toy. Note that
the policy adheres to the prompt video and chooses green can
over chips bag or banana for placing upright.

Quantitatively, we observe that BC-Z is often unable to
successfully complete the tasks when testing cross=object
motion transfer, as shown in each task in Table II. In contrast,
our model (34%) performs better than BC-Z (17%) in this
setting and performs the motion indicated in the prompt
video. Our model is comparable to BC-Z with 45% success
rate on picking out-of-distribution objects. More importantly,
tasks involving placing into drawers demonstrates significant
improvement (29% → 54%). For certain tasks like picking
from drawers and placing on counters and knocking over, BC-
Z is unable to perform at all whereas Vid2Robot is able to
complete the task 25%− 29% of the time.

C. Ablations

In §II-E, we presented action prediction loss and three
auxiliary losses. Here we analyze the role of these additional
loss functions to the overall success rate. We investigate the
impact of (1) not using any auxiliary loss, and (2) adding
auxiliary language loss.

We consider the tasks similar to that described in §III-A,
that is, 9 tasks for evaluating each policy.

We have 3 model variants, namely, the original Vid2Robot,
the one without video-text contrastive loss (CL) and the one
with only action prediction loss. We ask 3 human evaluators
to run the each model variant with 2 rollouts each. In total,
we report results with 3×3×9×2=162 rollouts in Fig 8. The
error bars indicate the standard deviation for success reported
on rollouts with each model variant.

1) What is the impact of not using any auxiliary loss?:
We observe that the performance of our model (61%) is
significantly improved by enforcing representation constraints
through auxiliary losses, in comparison to using only action
prediction loss (45%). It highlights the importance of the
proposed auxiliary losses in §II-E.

2) What is the impact of the auxiliary language loss?:
BC-Z proposed to use language representations to improve
video representations for conditioning the policy. We compare
our policy with another variant trained with all losses but the
Video-Text CL. We observe only marginal improvement of 1-
2% in success rate when using the language loss. This implies
that video alignment and video contrastive loss contribute
significantly towards performance improvement. Our results
hope to serve as a promising evidence that effective video
representations can be learned without auxiliary losses that
use pre-trained language embeddings.

Fig. 8: Ablation for auxilliary losses used in Vid2Robot. We com-
pare our proposed approach that has all auxiliary losses (green, left)
with a variant without language contrastive loss that was originally
proposed in BC-Z (orange, middle) and a version with no auxilliary
losses (blue, right). More details in (§III-C)

IV. RELATED WORK

Task Specifications for Robots The development of general-
purpose robots hinges on effectively grounding task specifica-
tions. Videos are a dense source of information that not only
provide what to do but also how to do it in physical world. Re-
cent works have used videos for task specification [4, 24, 41].
Another line of work uses videos to learn world models
to predict future visual observations [30, 27, 10, 32, 16].
While language [46, 8, 34, 35], final goal images [25, 7],
and others like hand-drawn inputs [44] have been proposed as
means for task specification, learning from prompt videos is
complementary to these approaches and inevitable for rapid
adaptation of trained polices to perform new manipulation
skills at deployment.
Learning from Human Demonstrations As videos of hu-
mans performing various tasks proliferate the internet, several
works aim to address how to best leverage this information for
robot learning. The difference in robot vs human embodiment
poses a significant challenge, for which existing approaches
range from translating image of a human into the robot [43]
to inpainting for agent-agnostic representations [3]. Many prior
works propose to leverage off-the-shelf models for hand pose
estimation and contact tracking [5, 13, 38], object-centric
representations [39, 21], as well as reward functions for rein-
forcement learning [3, 28, 43]. Other methods [33, 45, 5] cast
this problem into visual representation learning to accelerate
learning of downstream motor control tasks. While these
modular learning solutions work well in limited datasets, these
are prone to compounding error of each of its component, and
thus, not efficiently scalable. End-to-end training approaches
for goal-conditioned imitation learning [12, 42, 19, 14] and
reinforcement learning [40, 36] are promising alternatives to
these techniques, but these results have been largely limited
in simulation and hindered by sim-to-real gap. In contrast, we
choose to tackle this as an end-to-end large multi-task learning
from human videos with real robot evaluations.
Imitation via Paired Demonstrations Our setup of paired
prompt videos and robot trajectory is most similar to One-Shot
Visual Imitation literature. Many prior works assume access to
pairs, where the first is used as the demonstration of the task to
be performed, and the second as the observation of the agent.



Place coke can upright
Human Prompt Videos Robot Policy Rollout Videos

Move rxbar chocolate near coke can

Knock water bottle over Bottle fell out of hand when grasping

Self occlusion preventing full observation of state

Moved rxbar near another can (distractor) instead of the coke can

Fig. 9: Failure analysis with policy rollouts. (Top) Policy predicts gripper pose and depends on the IK solver to move the arm. Sometimes,
the IK solution can block the robot’s camera view. (Middle) Grasping failures happen, especially with transparent and deformable objects.
(Bottom) Distractor objects as well as difference in lighting and background may cause recognition errors, where policy might perform the
correct motion but with incorrect object(s).

Some of the early works [17] proposed training a demon-
stration network via temporal convolution and neighorhood
attention to condition a manipulation policy network. In more
recent approaches like [12, 29, 21], paired demonstrations and
observations are used to train a transformer policy, often with
additional constraints like inverse dynamics prediction[12]
or contrastive representation learning [29]. However, these
approaches are largely evaluated in specific set of simulated
tasks, and not compared on real robots. Most similar to our
work is BC-Z [23] which reports evaluations with real robot
tasks. While our setup is similar to some of this prior art,
our model Vid2Robot couples large image encoders, cross-
attention layers, and contrastive auxiliary losses to learn a
manipulation policy that imitates a human showing a task.

V. LIMITATIONS AND FUTURE DIRECTIONS

In §III, we show that our approach has improved over
previous work but there is a gap in performance for video-
conditioned policies. Language conditioned policies like [9]
shows a higher success for known set of tasks with several
hundreds of teleoperation trajectories for training. We, on the
other hand, accomplish the first milestone of evaluating the
video-conditioned policies in the similar setup. We discuss
three limitations of our work and provide insights for future
directions here.

First, we qualitatively investigate some reasons for failure
of a policy rollout. In Fig 9, we illustrate and explain 3
examples showing how self occlusion, grasping errors and
presence of distractors can lead to failure during any rollout.
Second, we observe a significant drop in the grasping success
in Fig 6. While we use robot camera observation to estimate
the state and implicitly learn depth estimation, it is often
incomplete when there is occlusion or when the robot gripper

is out of camera view. By enhancing the state information
with multimodal sensor fusion, we may improve the grasp
success rate. Third, we consider carefully collected short task
instruction demonstrations from three different sources as
shown in §II-B, all of which are 5 to 20 seconds videos. To
test our models on long horizon demonstrations or ‘in-the-
wild’ videos online, we need effective pairing strategies for
videos and a few corresponding robot trajectories to train the
policy.

VI. CONCLUSION

We demonstrate novel methods for both data collection and
modeling for video conditioned skill learning. These skills
generalize to novel object configurations and more abstracted
verb meanings when no immediately obvious object is visible.
The skills and generality provided by our model complement
other approaches to widen the set of skills that robots have
access to, and to include skills not otherwise easily acquired.
Future work can leverage these learned primitives to execute
novel task plans. We hope our cross-object motion transfer
experiments will encourage further research in transferring
motion to new objects and settings for bootstrapping data
collection, and enabling human-robot interaction with rapid
adaptation to new skills.
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